Skip to main content

Verification Engines

QWED provides 8 specialized verification engines, each using deterministic methods first and LLM only as fallback.

Engine Overview

EngineTechnologyKey Features
MathSymPy + DecimalCalculus, Matrix ops, NPV/IRR, Statistics
LogicZ3 Theorem ProverForAll/Exists quantifiers, BitVectors, Arrays
CodeMulti-Lang ASTPython, JavaScript, Java, Go security analysis
SQLSQLGlot ASTComplexity limits, Cost estimation, Schema validation
StatsWasm/Docker SandboxSecure code execution with AST validation
FactTF-IDF + NLPSemantic similarity, Entity matching, Citations
ImageDeterministic + VLMMetadata extraction, Size verification, Multi-VLM
ReasoningMulti-LLM + CacheChain-of-thought validation, Result caching

Deterministic-First Philosophy

All engines now follow a deterministic-first approach:

  1. Try deterministic methods first (100% reproducible)
  2. Fall back to LLM only when necessary
  3. Discount LLM confidence when used
# Example: Fact verification is now deterministic!
result = client.verify_fact(
claim="Paris is in France",
context="Paris is the capital of France."
)
# Uses TF-IDF similarity + entity matching
# No LLM needed for most claims!

Engine Selection

QWED auto-detects the appropriate engine:

Content PatternDetected Engine
2+2=4, sqrt(16), derivativeMath
(AND ...), ForAll, ExistsLogic
SELECT, INSERT, DROPSQL
```python, import, functionCode
Claims with contextFact
Image bytes + claimImage

Or specify explicitly:

result = client.verify(query, type="math")

Engine Documentation

Deterministic Engines

Data Verification Engines

Orchestration Engines